
 June 9, 2009

Steam Locomotive Cab Simulator
aka: My Ultimate Toy Train (MUTT)

Part 2 of 2 - Operation

Background

Part 1 (Link 1) summarized the design and construction of MUTT, which began in September,
2003. What follows is a summary of finally achieving full operation of the simulator, including
tailoring of the computer hardware/software configuration and considerations for future design
of simulators. A lot has happened in the train simulation software world since Part 1 of this
article was posted in January, 2007. Kuju released Rail Simulator, now being maintained by
RSDL. Microsoft began development of a second version of MSTS based on their Flight
Simulator X and Vista architecture, but subsequently suspended it in January, 2009 as a victim of
U.S. economic downturn. Auran released additional versions of Trainz. PIE/RailDriver released
some new X-Keys hardware, but no news regarding their suspended TMTS or release of their
long-awaited ReDAC Gauge Module.
As stated in Part 1, one major limitation of Microsoft�s original MSTS is the lack of an
Application Program Interface (API). Had MSTS-2 been completed, it would have afforded
SimConnect, which is what the flight simulation community uses for interface to cockpit
hardware. Unfortunately, MSTS-2 was not to be and to date, none of the other current train
simulation released products have provided this capability.
Then, thanks to the suggestion of another cab simulator enthusiast, I discovered Cheat Engine
(CE) 5.5 (Link 2). CE is a freeware tool used to locate and modify parameters within a game
program to gain various advantages during play. I quickly found it to be a well-programmed,
powerful tool that provided the key for unlocking the mystery of establishing a dynamic interface
with MSTS. The sections that follow in this article summarize how the interface was finally
established, the operational result in the cab, and my thoughts on the prospects for what is now
proven to be possible.

Interface Development

Use of CE consists of three basic procedural steps:
1. Scanning the game program to discover the location of a selected variable parameter and

then discovery of the program instruction(s) that modifies or accesses that location. This
was the most significant and time consuming of the three steps.

2. Programming a patch to replace the game instruction with a branch to new instructions
that capture the variable parameter of interest and perform operations with it. The patch
code is in x86 assembly language with an option to insert scripts developed in higher
level languages. I opted to use assembly language to keep things simple.

3. Applying the patch to the game at run time � the easiest part of the job.
One extremely beneficial programming feature of CE is that multiple individual patches can be
imbedded within the main patch file, including the ability to share data parameters between the
individual patches. For example, the MSTS patch file for MUTT consists of 16 individual
patches � essentially one for each interface variable. I�ll leave the description of CE at that. The
web site (Link 2) offers an excellent tutorial that should be followed by first time users.

Doug Johnson Page 1 of 6

http://www.virtualrailroader.com/SLCabSim.html
http://www.cheatengine.org/
http://www.cheatengine.org/

 June 9, 2009

The simulator architecture is represented by the following MUTT Functional Block Diagram.

The locomotive cab itself has changed very little since Part 1 of this article. It was completely
disassembled for a residence move and reassembled as shown in the following photos.

Doug Johnson Page 2 of 6

 June 9, 2009

Details of MUTT hardware construction were presented in Part 1 of this article. The only major
change since Part 1 was the addition of a brakeman�s station outside the cab (shown in the photo
at the right). It includes a key pad to perform handbrake, uncoupling, and turnout operations.
Part 2 will focus on the hardware interface aspects for gauges and controls, which are shown in
the following Interface Functional Block Diagram.

Discrete controls (on/off switches) are the simplest interface and utilize a PIE Switch Interface
module (Link 3) which provides programmable keystroke macros, including combinations and
sequences of keystrokes. All other interface is through an external microcontroller, a Parallax
Stamp BS2px (Link 4), which receives MSTS parameters via the COM1 serial port.
Asynchronous communication is used to avoid having MSTS wait for a request for data, thereby
preserving frame rate. For gauges, the Stamp receives each parameter value, performs
calibration offset and scaling, and sends the result to a SEEI Mini SSC II servo driver card (Link
5). For analog controls (proportional) the Stamp �reads� the timed output of a precision RC
network to determine the physical control position in the cab, compares it to the received MSTS
setting, and issues increase/decrease/hold states to another PIE Switch Interface module which in
turn issues the appropriate keystrokes to MSTS. This �servo loop� approach to control tracking
is delineated in the Interface Functional Block Diagram inset box.

Doug Johnson Page 3 of 6

http://www.piengineering.com/xkeys/xkswi.php
http://www.parallax.com/tabid/295/Default.aspx
http://www.seetron.com/ssc.htm
http://www.seetron.com/ssc.htm

 June 9, 2009

It was discovered that thanks to the Windows XP operating system, communication from the
MSTS patches to COM1 had to employ a combination of HyperTerminal (under Accessories /
Communications) and UserPort (Link 6 and Link 7). Windows does try to protect its resources!
One other noteworthy aspect that required consideration in the interface design was the variation
in MSTS frame rate during any given operating session, which is typically more than 3:1
depending on the degree of external visual detail and view selection. This variation is
accommodated by accessing the frame rate parameter within MSTS and dynamically adjusting
the output rate in the software patch by skipping cycles as the frame rate increases. This allows
the Stamp microcontroller to keep up with the outputs and achieve a relatively constant refresh
rate (approximately 10/second) for driving gauges and reading controls. As a side note, the
application of the software patch, which constitutes a relatively small amount of code in
comparison to MSTS itself, was found to have no detectable impact on frame rate.

Experiences in the Cab
Simply stated: WOW, there�s nothing like it (short of the real thing)!! I originally thought MSTS
was pretty neat while operating from a PC keyboard. Then, I discovered a new experience using
RailDriver. Now, operating from a cab brings a quantum leap in feeling like you�re part of the
simulated machine and environment. I�ll highlight three specific things that got my attention.
First, it was immediately obvious that operating a steam train is truly a three person job. When
an engineer has to leave the seat to open the fire door or adjust the fire controls, having a fireman
is very desirable. Or, leaving the cab as a brakeman to throw a turnout, set a handbrake, or open
a coupler leaves nobody to control the locomotive. Physically having to do all these things
versus having the functions within finger length on a keyboard is a much different experience. I
had originally considered having a fireman�s jump seat in the cab � I now believe it�s a must-do
addition. I did have sufficient foresight to add the brakeman�s station outside the cab. Now, I
need two more people as obsessed as I am about train simulation to be on the MUTT crew.
The second thing that became apparent is how little I had absorbed from the various prototype
documents dealing with braking, fire control, and even basic �set up and running� functions of
the engineer. More than once, while concentrating on some driving operation, I neglected to
watch the water sight glass and apply the injector controls, resulting in melted boiler plugs (and a
mandatory MSTS activity restart). In retrospect, while I had used various prototype documents
for simulator hardware design I had not sufficiently read and digested them from an operations
viewpoint.
The third aspect is that I gained a much better perception of the locomotive physics, and have
begun to question certain aspects having to do primarily with the power factors and braking
characteristics. The locomotive model is not any different than with keyboard operation, but
sitting in the cab feeling the sound system vibration, watching the gauges, and monitoring the
response to control changes gives one a different perspective on the physics model. This is
another area where I have some homework to do for the specific steam locomotives I am
operating.
In short, the cab experience is sufficiently real and I think all that is missing are uncomfortable
heat, steam leaking from fittings, wind coming in through the front window (skip rain), and more
vibration and bumping in the seat. I�m now working on a design change for the latter effect �
just like a model railroad layout, MUTT probably never will be completely finished.

Doug Johnson Page 4 of 6

http://www.embeddedtronics.com/design&ideas.html
http://www.etteam.com/download/UserPort.pdf

 June 9, 2009

The Future of �P-Scale� Virtual Railroading
One aspect I have saved for last is that the method of using CE to locate the source of variables
for output and the overall simulator architecture are not unique to MSTS or steam cabs. The
approach could be implemented for any of the other train simulation software platforms (e.g.,
Trainz or Rail Simulator), any other type of constructed cab (e.g., diesel or electric), or for that
matter to simulations other than trains. Therefore, the simulator design I have described can be
applied to a diverse community interest � essentially any game platform that is controlled with
keyboard inputs is a candidate.
Throughout the project I reflected on how MUTT compared to my prior model railroad layouts.
A conventional layout, in any scale G to Z and all others in between, is a simulation of the real
world. I have coined the term �P-scale�, or Prototype Scale, to represent a class of simulation
that employs a full size cab with �human in the loop� operation. It is an extension of classical
virtual railroading in the use of computer generated dynamic and visual models of railroad
elements with the added dimension of prototypical cab hardware controls and displays. With
this definition in mind, consider the following comparison of P-scale virtual railroading to model
railroad layouts:

Feature P-scale Virtual RR Model RR Layout

Physical space Fixed footprint Grows to fill available space

Skills - hardware - Carpentry/woodworking
- Electrical/electronics
- Mechanical/metalworking
- Painting/artistic media

(requires the same skill set)

Skills - modeling Software objects and effects:
- Download
- Scratch build (3D)
- Purchase from third parties
- Incorporate lighting effects
- Include sound files

Physical objects and effects:
- Kit assembly
- Scratch build
- Purchase finished
- Special lighting electronics
- Special sound electronics

Expense - hardware (depends on design features) (roughly the same)

Expense - models - Extensive freeware available
- No cost to scratch build

- Sizable investment over time
- Materials for scratch building

Configuration
flexibility

- Fixed locomotive type
- Any place, era, time, or season
- Extensive use of animation

- Wide variety of locomotives
- Fixed location, era, and season
- Special hardware to animate

Operating sessions - Multiple operators
- Other �AI� trains
- Multi-player via internet

- Multiple operators
- Multiple trains
- Multi-player (as space permits)

Doug Johnson Page 5 of 6

 June 9, 2009

The bottom line is that the primary limitations of P-scale versus a conventional layout are: (1)
having a single locomotive cab configuration, and (2) the need to master certain software skills.
In all other categories the advantages of P-scale in effect make it the equivalent of an endless set
of layouts, each with it own historical location and seasons. And, rather than being an
observer/operator watching and controlling from a distance, with P-scale one becomes an
integral element of the simulation itself as an active participant performing in the roles of the
crew.
My personal belief is that P-scale has the potential to become as popular a hobby in the future as
model railroading has been in the past. I do not believe it will (or should) replace model railroad
layouts � there is a certain magic of watching trains runs through miniature scenes that is rooted
in childhood memories, at least those of us in the older age group. But today�s young generation
are raised on computer games and may likely find virtual railroading more in line with their
interests and skills. P-scale offers something for both interest groups � the challenges of building
something with tools and physical effort, very similar to conventional layouts, and the added
challenges of applying computer skills to build something with bits and bytes. If third parties
decide to pursue the market potential, similar to what RailDriver has done and what others
produce for flight simulation, we might witness the birth of a software and hardware product line
that could rival the HO-Scale model train industry�s 50+year success.
End of editorial � time will
tell if my vision is correct.
In the meantime, I intend to
resume modeling a local
historical branch line and
spend a lot of time in the
cab. With some practice, I
might eventually be worthy
of �set up and running�
engineer status.
Questions and comments
regarding the MUTT
project can best be
communicated to me via
the Train-Sim.Com forum
(Link 8) under Microsoft
Train Simulator. The
forum also provides an
option for contact via
private email.

Doug Johnson Page 6 of 6

http://forums.flightsim.com/vbts/index.php

